Graph-based prior and forward models for inverse problems on manifolds with boundaries

نویسندگان

چکیده

Abstract This paper develops manifold learning techniques for the numerical solution of PDE-constrained Bayesian inverse problems on manifolds with boundaries. We introduce graphical Matérn-type Gaussian field priors that enable flexible modeling near boundaries, representing boundary values by superposition harmonic functions appropriate Dirichlet conditions. also investigate graph-based approximation forward models from PDE parameters to observed quantities. In construction prior and models, we leverage ghost point diffusion map algorithm approximate second-order elliptic operators classical Numerical results validate our approach demonstrate need design covariance account

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Forward and Inverse Scattering on Manifolds with Asymptotically Cylindrical Ends

We study an inverse problem for a non-compact Riemannian manifold whose ends have the following properties : On each end, the Riemannian metric is assumed to be a short-range perturbation of the metric of the form (dy) + h(x, dx), h(x, dx) being the metric of some compact manifold of codimension 1. Moreover one end is exactly cylindrical, i.e. the metric is equal to (dy) +h(x, dx). Given two su...

متن کامل

Bayesian Inverse Problems with Monte Carlo Forward Models

The full application of Bayesian inference to inverse problems requires exploration of a posterior distribution that typically does not possess a standard form. In this context, Markov chain Monte Carlo (MCMC) methods are often used. These methods require many evaluations of a computationally intensive forward model to produce the equivalent of one independent sample from the posterior. We cons...

متن کامل

Random forward models and log-likelihoods in Bayesian inverse problems

Abstract: We consider the use of randomised forward models and log-likelihoods within the Bayesian approach to inverse problems. Such random approximations to the exact forward model or log-likelihood arise naturally when a computationally expensive model is approximated using a cheaper stochastic surrogate, as in Gaussian process emulation (kriging), or in the field of probabilistic numerical ...

متن کامل

Graph Laplacians on Singular Manifolds: Toward understanding complex spaces: graph Laplacians on manifolds with singularities and boundaries

In manifold learning, algorithms based on graph Laplacian constructed from data have received considerable attention both in practical applications and theoretical analysis. Much of the existing work has been done under the assumption that the data is sampled from a manifold without boundaries and singularities or that the functions of interest are evaluated away from such points. At the same t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2022

ISSN: ['0266-5611', '1361-6420']

DOI: https://doi.org/10.1088/1361-6420/ac3994